Pre-Calculus 120 A

Polar Coordinates

In a Cartesian coordinate system we identify each point in the plane according to a unique ordered pair of real numbers (x, y).

We can also locate a point according to its distance from the origin (pole) and rotation from the positive x-axis (polar axis). As illustrated in the diagram to the right, if $P(x, y)$ is a point in the plane r units from the pole and a rotation θ from the polar axis, then the ordered pair (x, y) can also be identified by $(\mathrm{r}, \boldsymbol{\theta})$. These coordinates are called the polar coordinates of P .

CONVERTING FROM POLAR COORDINATES (r, θ) TO RECTANGULAR COORDINATES (x, y) :

- Find x using $\mathrm{x}=\mathrm{r} \cos \theta$ (Since $\cos \theta=\frac{x}{r}$)
- Find y using $\mathrm{y}=\mathrm{r} \sin \theta \quad\left(\right.$ Since $\sin \theta=\frac{y}{r}$)
- The rectangular coordinates are (x, y)

Example 1: Converting from Polar Coordinates to Rectangular Coordinates

Sketch a diagram and convert the following polar coordinates to exact rectangular coordinates.
a. $\left(6,135^{\circ}\right)$
b. $\left(-5, \frac{5 \pi}{3}\right)$
c. $\left(7,-150^{\circ}\right)$

Solution:

CONVERTING FROM RECTANGULAR COORDINATES (x, y) TO POLAR COORDINATES (r, θ) :

- Find the radius, r, using the Pythagorean relationship $r=\sqrt{x^{2}+y^{2}}$.
- Find the reference angle, θ_{R}, using $\tan \theta_{R}=\left|\frac{y}{x}\right|$.
- Find the angle, θ, by determining the quadrant in which the terminal arm is located and using the reference angle, θ_{R}.
- The polar coordinates are (r, θ).

Example 2: Converting from Rectangular Coordinates to Polar Coordinates

Sketch a diagram and convert the following rectangular coordinates to polar coordinates.
a. $P(8,15)$
b. $Q(7,-24)$

Solution:

a. $\mathrm{P}(8,15)$	b. $\mathrm{Q}(7$, -24)
$(\mathrm{r}, \theta)=\ldots$	$(\mathrm{r}, \theta)=$

