Transformations of Logarithmic Functions

• The graph of the logarithmic function $y = a \log_c (b(x - h)) + k$ can be obtained by transforming the graph of $y = \log_c x$. These transformations should be performed in the same manner as those applied to any other function.

Example 1: Translations of a Logarithmic Function

Sketch the graph of $y = \log_4(x + 4) - 5$ and state the mapping rule, domain and range, x- and y- intercepts, and equation of the asymptote.

Solution:

Begin with the graph of $y = \log_4 x$. Think of $y = \log_4 x$ as $4^y = x$. Choose "nice" values of y first and then determine the x-values. Next, identify the transformations on this function to create $y = \log_4(x+4) - 5$.

The base graph must be translated ______

Mapping rule: $(x, y) \rightarrow$ _____.

• Complete each table of values and sketch the graphs of both functions.

$y = \log_4 x$		$y = \log_4(x)$	(x+4)-5					10 V											-
ху	,	×	у					,			_		-		+	\vdash	+	\vdash	-
				-				8									1		
				-				6			_		+		+	\square	+	\vdash	-
								4											
								- e			_		+		+	\square	+	\vdash	-
For the function $\gamma =$	$\log_4(x)$	+4)-5:			- 6 -5	-4 -3	-2 -1	1	2 3	4 5	6	7 \$	9 1	0 11	12 1	3 14	15 1	6 17	18 x
Domain:								-1									-		-
Range:								-3			-	$\left \right $	-				-	\square	-
x-intercept: _								-											_
y-intercept: _								-8									_		_
Equation of t	he verti	cal asympto	te:					10											

Section 8.2

Example 2: Reflections and Stretches of Logarithmic Functions

Sketch the graph of $y = -\log_2 4x$ and state the mapping rule, domain and range, x- and y- intercepts, and equation of the asymptote.

Solution:

Begin with the graph of $y = \log_2 x$. Think of $y = \log_2 x$ as $2^y = x$. Choose "nice" values of y first and then determine the x-values. Next, identify the transformations on this function to create $y = -\log_2 4x$.

The base graph must be ______ •

Mapping rule: $(x, y) \rightarrow$ _____.

Complete each table of values and sketch the graphs of both functions.

У

$y = \log y$	⊃g₂ x	y = -10	$og_2 4x$
x	у	x	У

For the function $y = -\log_2 4x$:

Domain: _____

Range: _____

x-intercept:

y-intercept: _____

Equation of the vertical asymptote:

Example 3: Combine Transformations

Sketch the graph of $y = -2\log_3(x-3) + 5$ and state the mapping rule, domain and range, x- and y- intercepts, and equation of the asymptote.

Solution:

Begin with the graph of $y = \log_3 x$. Think of $y = \log_3 x$ as $3^y = x$. Choose "nice" values of y first and then determine the x-values. Next, identify the transformations on this function to create $y = -2\log_3(x-3) + 5$.

Mapping rule: $(x, y) \rightarrow$ ______.

• Complete each table of values and sketch the graphs of both functions.

y = lo	$\log_3 x$
x	у

$y = -2\log_3(x-3) + 5$						
×	У					

For the function $y = -2\log_3(x-3) + 5$:

Domain: _____

Range: _____

x-intercept: _____

y-intercept: _____

Equation of the vertical asymptote: _____

Example 4: Determine the Equation of a Logarithmic Function Given Its Graph

a. The transformed graph illustrated in the diagram below can be generated by stretching and reflecting the graph of $y = \log_4 x$. Determine the equation of the transformed graph.

b. The transformed graph illustrated in the diagram below can be generated by stretching the graph of $\gamma = \log_4 x$. Determine the equation of the transformed graph.

Solution:

a. _____

b. _____

Example 5: Use Transformations of an Exponential Function to Model a Situation

There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number, F, of flower species that a butterfly feeds on and the number, B, of butterflies observed can be modeled by the function $F = -2.641 + 8.958 \log B$.

Predict the number of butterfly observations in a region with 25 flower species.

EXTRA PRACTICE:

