Centreville Community School

Follow us on Twitter at @CentrevilleSch for additional activities.

Grade 6 HOME LEARNING PLAN - May 4th to $8^{\text {th }}$

Grade:	6
TEACHERS	Grant Robinson, Iris Hitchcock, Kim Foster, Angela Taylor and Melissa Richardson
Chris Sparrow	Principal : Christopher.Sparrow@nbed.nb.ca
Kori Springer	Resource: Kori.Springer@nbed.nb.ca
David Mahar	Guidance: David.Mahar@nbed.nb.ca
School	CentrevilleCommunity@nbed.nb.ca

In accordance with the communication sent from our Minister of Education, Dominic Carty, on April 2 , 2020 Home learning opportunities to support literacy, numeracy, science and social studies outcomes will be made available online weekly by Middle School Teachers. Families are encouraged to: - Support their children to complete the options below for an average of two hour per day. -Read aloud with heir children daily; and -Consider daily physical activity and free play as an important part of their child's mental health and skill development.
\quad Subjects

You can also email your work to me at: iris.hitchcock@ nbed.nb.ca
Your Reading Response
assignment is in there too, if you want to send it to me.

Grade 6 Social Studies

If you have any questions about the Social Studies activities, please contact-

Melissa

Richardson melissa.richardso n2@nbed.nb.ca

If you would like to submit your completed products for feedback, you can email the doc or pic to the above email address.

READING - You should be reading at least 30 minutes each day. This could be any of the following: books, magazines, newspapers (yes, they still make paper ones but you could read online news too), online blogs, articles, e-books (borrow some from the public library). You could read to younger siblings too. Once a week, I would like you to write a response to something you have read. You could tell something about the characters, setting, what is happening in the story, any interesting words you find, your favorite/least favorite part or predict what will happen in the next part of the book. If you are reading non-fiction (informational) material, tell 4 things you learned that you didn't know before or something you already know that wasn't in the article.

Weekly Editing Challenge: There are 10 errors in the following passage. Some are misspelled words, capitalization errors or punctuation mistakes. Rewrite the passage, making the necessary changes.
Has you read The Polar Express or jumanji. The author of them books Chris Van Allsburg, was born on June 18, 1949. Van Allsburg has childhood memorys of some people who wanted him to hold a football instead of crayons, but he still become an artist. He never thought about writing childrens books until his wife invited an author to dinner won night. His first picture book was The Garden of Abdul Gasazi.

Arab Spring

Research the Arab Spring by viewing the following videos:
$\stackrel{\wedge}{ }{ }^{\text {https://www.choices.edu/video/what-is-the-arab-spring/ }}$
$\stackrel{\wedge}{\wedge}$ https://www.youtube.com/watch?v=Fgcd5ZcxDys
$\stackrel{\text { https://www.youtube.com/watch?v=guOlqZYrcTM }}{ }$
(7) https://www.choices.edu/video/what-caused-the-arab-spring/
$\left.{ }^{4}\right)$ http://worldblog.nbenews.com/_news/2011/09/15/7758131-how-rap-music-fueled-the-arab-spring-uprisings
visiting the following website:
$\stackrel{\text { https://www.history.com/topics/middle-east/arab-spring }}{ }$
() https://kids.britannica.com/students/article/Arab-Spring/574346
$\stackrel{\text { https://www.history.com/topics/middle-east/arab-spring? li source=LI\&li_medium=m2m-rcw-history }}{ }$
and/or reading the information sheet below.
Assignment: Write 2 "Tweets" about the events. Tweets don't have to be long (max 240 characters), but need to include enough details to show you understand the main idea.

Try creating an original political cartoon about the Arab Spring or Arab Winter.

Feel free to upload them to Microsoft Groups, under assignments, as well. A
Social Studies 6-6R group has been activated for those who are interested.

ARAB SPRING

The People vs. Dictators/Kings -Rulers were overthrown in Tunisia, Egypt, Libya \& Yemen -Civil war in Syria, but the leader remains in power

Overall, the Arab Spring did not bring about the changes in the Middle East most hoped would be achieved.

Terrorist groups took advantage of the chaos \& gained control of large parts of the region.

The Arab Winter is a term for the return of authoritarianism \& Islamic extremism after the Arab Spring protests failed.

Wars \& instability across the Middle East has led to the displacement of 17 million refugees.

Grade 6 Numeracy

If you have any questions about the Numeracy activities, please contact-

Kim Foster kim.foster@nbed .nb.ca

May $4^{\text {th }}$ to May $8^{\text {th }}$ - Offline Math Choice Boards (Grade 6)						
Monday	Tuesday		ednesd		Thursday	Friday
Tom has 10 shelves that he needs to put up and he has 30 brackets to support them. What is the ratio of brackets to shelves? Write as many different ratios these numbers. Mang sure you explain your choices. If he has 100 books to put on theses shelves, then what is the ratio of books to shelves? Choose at least one of your ratios and write the numbers used as a fraction.	Remember these basic benchmarks: -100% is all; - 50% is half; -25% is a quarter -75% is three quarters; -33% is a little less than a third. -67% is a little more than two thirds Tom and Sue are building birdhouses. The cost of building 8 is $\$ 48$. How much will they have spent on them when 25% of the houses are build? Use a number line, if needed, to help model. How much does it cost to build just one? Tom and Sue want to earn enough money to buy a new PlayStation 4 that is $\$ 450$. How many bird houses will they have to sell at $\$ 16$ each in order to earn the needed money? Remember that they must pay for the materials out of their earnings.					Take a sheet of paper and fold it so that you have 10 equal sized pieces when you unfold it. Use this as a template for planning a garden. You have at least 5-8 different kinds of seeds, use different colors to show what is being planted in each section of your garden. Use fractions, percents and ratios to describe each different colored section.
The ratio of girls to the total number of students in the school is $63: 120$. How many boys are in the class?	You solve a problem and the answer is 400 What might some of the questions have been?	Find a it to m squares opposit number net.	small siz ake 6 equ s to build ite sides a red 1 to 6	ed box ual size a net lways 6.) Buil 4	u can cut up. Use es. Use these (remember that 7 on a die that is D shape using your *Net: A pattern that you can cut and fold to make a 3D shape. This is the net of a die, but the numbers are in the wrong positions:	Find the definitions for the 6 following triangles and then, using a ruler, draw two different ones for each of them. Scalene, Isosceles, Equilateral, Right, Obtuse and Acute Can you find examples of these triangles around your home?

May $4^{\text {th }}$ to May $8^{\text {th }}-$ Offline Math Choice Boards (Grade 6)

Math facts

Daily Practice, 10 minutes

Make cue cards with multiplications from 1×1 to 12×12 on the front of the cards. On the back of the cards, write the answers. Use these to practice multiplication skills! (For a challenge, you can time yourself and see how many you can get right in a certain amount of time and set a goal to see your improvement!)

Offline Games

Probability Dice Game or Roll Out Fractions_- See week of April $\mathbf{2 0}^{\text {th }}$ for directions
Play Multiplication War! Or Play Addition War! - See week of April $\mathbf{1 4}^{\text {th }}$ for rules.

May $4^{\text {th }}$ to May $8^{\text {th }}$ - Online Math Choice Boards (Grade 6)				
Monday	Tuesday	Wednesday	Thursday	Friday
Game 1 - Equivalent Ratios.	Game 2: Equivalent fractions	Game 3: Percents	Game 4: Area and Perimeter	Game 5: Rotations Game 6: Transformation Workshop

IXL Online Practice - I have a 30-day free trial and have set all middle school students up with a username and password. If you didn't receive the email from IXL with this information, please let me know and I will forward it to you for your child.

I have tagged the activities, right in IXL, which your child may wish to try. The headings listed below tell sections related to the learning activities for the week.

Click this link to go to Grade 6 IXL online activities: IXL Online Practice for Grade 6

Ratios and rates	One-variable equations	Percents	Three- dimensional figures (Objects)	Two-dimensional figures

A chance to practice your multiplication skills:
Mr. Boyd reads: The Best of Times

May $4^{\text {th }}$ to May $8^{\text {th }}-$ Online Math and Tech Games (Grade 6)

Some Middle School Web Sites for Math, Tech and/or Science

www.everfi.net
Sumdog (I only have passwords for grade 6)
Hour of Code
https://www.typing.com/

Check out the Code.org resources for students at home And take a weekly Code Break every Wednesday with special guests!

Sources for offline and online learning:
Teaching Student-Centered Mathematics Gr. 6-8 John Van de Walle,
Making Math Meaningful Marion Small, 2013
Box Cars and One-Eyed Jacks Jane Felling
"The Roll Out Fractions Game: Comparing Fractions" by Enrique Ortiz in Teaching Children Mathematics, August 2006

Grade 6

Science
If you have any questions about the Science activities, please contact -

Angela Taylor
angela.taylor@n
bed.nb.ca

This week for Science the focus is on Flight. You can gather some recyclable materials such as paper and string to perform a few experiments. Do you remember the Scientific Method? Do you remember playing Scientific Method Bingo and learning some of steps to follow when performing an experiment? If you have time, send me an email with the steps you remember.

If you are able to get online, try out some of these fun flight games. https://www.gre.nasa.gov/WWW/K-12/UEET/StudentSite/funandgames.html

Flight Activity \#1

Make a Better Paper Airplane

What child hasn't spent time making a paper airplane? Why not tum this common pastime into a lesson on the physics of aerodynamics and flight? This is a great activity for students of all ages, but older students should have a greater understanding of fluid dynamics and be able to push the outer limits of paper airplane design!

What You Need:

- Various types of paper (any paper around the house is fine, but try to locate papers with different weights and thicknesses)
- Stopwatch
- Possible other materials include paper clips, stapler, scissors, and glue as needed by design

What You Do:

1. Brainstorm ideas with your kid about what makes a good paper airplane. Talk about the different variables that can be changed (a type of paper, folding pattern, other materials used) and how each of these may influence the flight of the plane. Ptysics concepts to consider:

- Archimedes' Principle - An object surrounded by air is buoyed up by a force equal to the weight of the air displaced. If your budding Orville Wright uses heavier materials in the plane construction, your
 leamer needs to take into account that more air must be displaced in order to keep the plane aloft. Your child should consider compensating with a broader wingspan.
- Bernoull's Principle - When the speed of a fluid increases, pressure in the fluid decreases. In this case, the fluid is air. In order for a plane to stay airbome, there must be less pressure above the wing then below it. This allows the greater bottom pressure to exert an upward force on the wing, giving the plane lift. In order to accomplish this, wings tend to have a greater surface area on the tops than the bottoms. Picture the curved, slightly upturned, top of a wing. Now, as the plane moves through the air, wind must travel faster over the curved top of the wing than the flat bottom of the wing, providing lift.
- Air Resistance - Friction causes drag, an opposing force to the forward motion of the plane. In order to decrease air resistance, your child should consider an aerodynamic design that allows the plane to "slice" through the air. Possible design accommodations should include a pointed nose and smooth body.

2. Gather the materials and each of you make an airplane that you think will stay airborne the longest.
3. Let the competition begin! Either head outside on a calm day or find a large enough space to fly your planes indoors. Each person should take a few practice throws, then take turns having one person fly his plane while the other person times the flight. See whose plane stays airborne for the longest time!
4. Discuss the differences between your planes and why the winning plane flew longer than the other plane. Consider hitting the draving board with new designs for a rematch! There are loads of sites on the Intemet with various paper airplane designs. Consider visiting a few and seeing how their designs compare to the designs used by your child.
5. Turn up the heat on the competition and change the goal! Who can design the best trick airplane? Highest flying? Fastest?

Please send me some of your favourite airplane folding directions or websites with directions. Have fun!

Flight Activity \#2

*** Please be careful if you stand on a chair or ladder! Please have an adult assist you with this experiment. ***

How Do Different Materials Affect Air Resistance?

Grade: Middle School; Type: Physics

Objective:

This project will examine the relationship between materials and air resistance.

Research Questions:

- Do different types of materials affect air resistance differently?
- Which types of materials have the greatest affect on air resistance?

Air resistance is a crucial factor when designing a parachute. Discover what type of material will work best as a parachute.

Materials:

- Large plastic bag
- Paper
- Handkerchief
- String
- Clay
- Single hole punch
- Chair or ladder

- Timer
- Ruler
- Scissors
- Another person

Experimental Procedures:

1. Cut a square from the plastic bag and a square from the paper that is the same size as the handkerchief.
2. Cut 12 six-inch pieces of string.
3. Tie one piece of string to each comer of the plastic square.
4. Tie one piece of string to each corner of the handkerchief.
5. Punch a hole in each comer of the paper and tie a piece of string through each hole.
6. Attach a ball of clay to the bottom of the plastic square, paper square and handkerchief. Use the dangling string pieces for the attachment.
7. Stand on a chair or ladder.
8. Drop each parachute at the same height from the elevated location.
9. Have another person record the time from the moment the parachute is release until it hits the ground.
10. Analyze your data to determine which parachute material dropped the fastest. Which material has more affect on air resistance? Which material would make the best parachute?

What other materials did you find around your home to use for your parachute?
Why did you choose those materials?
Did you use string to attach your parachute together or did you find another material? How did it work?

What did you place at the bottom of your parachute for a weight? Was it a ball of clay like suggested or did you use something else?

Flight Activity \#3

Break the Egg

In this simple science experiment, your child will learn how lightweight Styrofoam protects a fragile object in a fall in the same way that it protects your head, in the form of a bicycle helmet, when you fall while biking. This experiment helps illustrate the importance of wearing a bicycle helmet whenever biking; the human head, fragile like an egg, can easily be injured in even a minor fall or collision. After this experiment, your child will never go helmet-less again!

What You Need:

- One small egg
- Styrofoam ball large enough to contain the egg
- 2 wide rubber bands
- Small, sharp knife (serrated works best)
- Teaspoon
- Flight of stairs or a stepladder

What You Do:

1. Have your child carefully cut the Styrofoam ball in half.
2. Have your child remove just enough of the interior of the ball with the teaspoon so the egg can fit inside.
3. Place the egg inside the ball.
4. Have your child put the two halves of the ball back together and secure with the rubber bands, placing them in a criss-cross pattern.
5. Assist your child in climbing onto the stepladder or up the flight of stairs.
6. Have your child drop the Styrofoam ball.
7. Remove the rubber bands and open the ball.
8. Observe the result. Did the egg break?

What Happened?

The Styrofoam absorbed the energy of the impact generated by the egg's fall. A similar result occurs when you fall and hit your head while wearing a bicycle helmet; the Styrofoam in the helmet helps absorb some of the shock from the fall and protects your head against injury. Wearing a bicycle helmet, however, is not a substitute for safe bicycling habits. Even a helmet wor't protect you from a severe impact.

Fun Styrofoam Facts:

What is Styrofoam? It is made of polystyrene, a kind of plastic. Polystyrene was first produced in the form of pellets (a precursor to Styrofoam peanuts) in 1931.

Molded Styrofoam, the kind that computers and other fragile objects are shipped in, was not created until 1959. Because of its unusual chemical structure, Styrofoam is very dense and strong.

How is Styrofoam formed into a bicycle helmet and other shapes? Air or other gases are mixed with melted polystyrene, then blended at a high speed.

Did you have a Styrofoam ball at home to use? I did not have one. If not, what did you choose for a material instead? If you email me with your results, I will email you what I used and the results of my experiment. Good Luck!

Physical Education

Grant Robinson Grant.Robinson @nbed.nb.ca

Phys. Ed. activities for middle school students will be posted by Mr. Robinson weekly. You can find these under "Class Announcements > Phys Ed 6-8" on the school website.

